

# **Scalable Nanomanufacturing (SNM)**

# Khershed P. Cooper, PhD

Program Director, Nanomanufacturing
ENG-CMMI
National Science Foundation
Arlington, VA

Sustainable Manufacturing Workshop, NSF, Arlington, VA, August 21-22, 2015

# **SNM Program**



- Started: 2011, in response to NSI: Sustainable Nanomanufacturing
- Grants: \$1.5M max. over 4 years, \$250-375K per year
- Total Budget: Average/year \$8-12M
- Across Divisions: ENG—CMMI, ECCS, CBET, EEC, IIP and MPS—DMR, CHE
- NSF POCs:
  - Khershed Cooper, ENG/CMMI
  - Bruce Kramer, ENG/CMMI Advisor
  - Nora Savage, ENG/CBET
  - Mona Zaghloul, ENG/ECCS
  - Carole Read, ENG/EEC
  - Rajesh Mehta, ENG/IIP
  - Lynnette Madsen, MPS/DMR
  - Timothy Patten, MPS/CHE

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop

# **SNM: Solicitation**



**Objective:** Research to *overcome the key scientific and technological barriers* that prevent the production of useful nanomaterials, nanostructures, devices and systems at an *industrially relevant scale*, reliably, and at low cost and within *environmental*, health and safety guidelines

Emphasis: Frame proposals in the context of the eventual manufacture of demonstrably useful nano-enabled products in high volume and at low cost

- Address scale-up large area, continuous, parallel, roll-to-roll ...
- Encourage multi-disciplinary collaboration ENG (Electrical, Mechanical, Chemical, Biomedical ...), MPS (Chemistry, Materials Research, ...)
- Encourage industrial collaboration planned activities, experimental test-beds, tangible meaningful collaboration
- Address a portion of the NM value chain building-blocks → nanostructures → nanocomponents & devices → nano-subsystems & systems

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop

3

## **SNM: Research**



- Novel scalable processes and methods for large-area or continuous manufacturing of nano-scale structures and their assembly/integration into higher order systems
- Fundamental scientific research in well-defined technical areas that are strongly
  justified as approaches to overcome critical barriers to scale-up and integration of
  nano-scale processes
- Design principles for production systems leading to nanomanufacturing platforms; identification of metrology, instrumentation, standards and control methodologies needed for process control and to assess quality and yield

Fundamental principles for volume manufacturing of nano-enabled products

K. P. COOPER-NSF Sustainable Manufacturing Workshop

22-AUG-2015

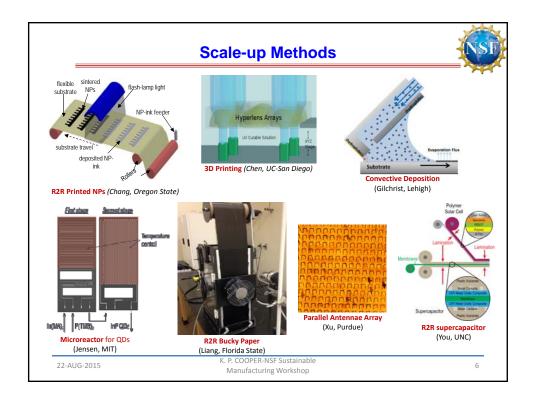
# **SNM: Research Areas**

### **Materials and Structures**

- C-based: CNT, Graphene, Bucky-tape, CNT Fibers, Cellulosic
- 0D: Nanoparticles, QDs, Core-shell, Janus, Hierarchical, Composite
- 1D: Nanowires, Nanopillars, Nanotubes, Nanofibers, Nonwovens
   2D: MoS<sub>2</sub>, BN, TMDs
- 3D: Nanoporous, Aerogels, Electrodes, Arrays, Gratings, Metamaterials

## **Processes and Methods**

- Chemical/Thermal: Combustion, Plasma, Hydrothermal, Drawing, Etching
   Vapor-based: CVD, PVD, PECVD, Laser CVD, ALD, MLD
- Solution-based: Coating, Casting, Colloids, Electrospray, Electrophoresis, Electrospinning, Electroetching, Microfluidics, Microreactors, Ink-jet Printing
- Lithography/Patterning: BCPs, AFM, DPN, NIL, PL, Laser Beam, E-beam, Ion-beam Assembly: Self, Directed, Molecular
- Bio-inspired: DNA, Virus, Protein, Diatoms
- Mechanical: Exfoliation, Nanomachining
  3D Nanomanufacturing: 3D Printing, Holographic


### **Applications**

- Environmental: Water Purification, Analytical Separation
- Chemical: Catalysis, Gas Storage
- Energy: Storage, Conversion, Batteries, Supercapacitors, PVs, Solar Cells, Fuel Cells Electronics: ICs, Flexible, Storage Memory, 3D Devices, TFTs, EM-Shielding
- Optoelectronics/Photonics: Imaging, Waveguides, Displays, Lighting

- Sensors: Biological, Chemical, Multiplexed
  Structural: High-Strength, Light-Weighting, Packaging
  Biomedical: Implants, Tissue Scaffolds, Diagnostics, Therapeutics, Probes
- Sheets/Wires: Fibers, Cables, Filters, Membranes, Textiles, Paper

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop



# **SNM Projects Relevant to Sustainability**



Designing and Integrating LCA Methods for Nanomanufacturing Scale-up – Jacqueline Isaacs, Northeastern

ent (LCA) methodology to address the ethical, legal, and societal impacts in decision-making as nanomanufacturing scales to commercial production

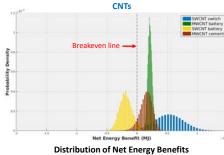
### **Technologies for Sustainability**

- Scalable Continuous Production of Aligned Carbon Nanotube and Nanoporous Membranes Chinedum Osuji, Yale
  - Investigate scalable methods for fabricating vertically aligned carbon nanotube and nanoporous membranes for applications in
- Continuous, Large-Scale Nanocomposite Production Via Micellular Electrospray Jessica Winter, Ohio State
  - Combine electrospray with self-assembly to produce nanocomposites for biomedical imaging and pharmaceutical separations, integrate EHS considerations into process design
- Scalable and Sustainable Hydrothermal Manufacturing of Nano-array based Low Temperature Diesel Oxidation Catalysts Pu-Xian Gao, U of Connecticut
  - $Study \ hydrothermal \ manufacturing \ technique \ for \ continuous, scalable \ and \ sustainable \ synthesis \ of \ low \ operating \ temperature$ diesel oxidation catalysts for automotive industry, with direct impact on fuel economy, energy and e
- Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment Daeyeon Lee, U of
  - $Use \ combination \ of \ nanostructured \ amphiphobic \ membranes, \ nanoimprinted \ anti-fouling \ membranes, \ and \ nanocomposite$ membranes that have enhanced selectivity and permeability for fracking waste
- Roll-to-Roll Manufacturing of Films and Laminates Based on Cellulose Nanomaterials Jeffrey Youngblood, Purdue Study continuous casting methods for roll-to-roll fabrication of cellulosic nanomaterial films and laminates, supported by sustainable and eco-friendly approaches for surface modification and particle dispersion

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop

# **Example of SNM Research**


### Designing and Integrating LCA Methods for Nanomanufacturing Scale-up

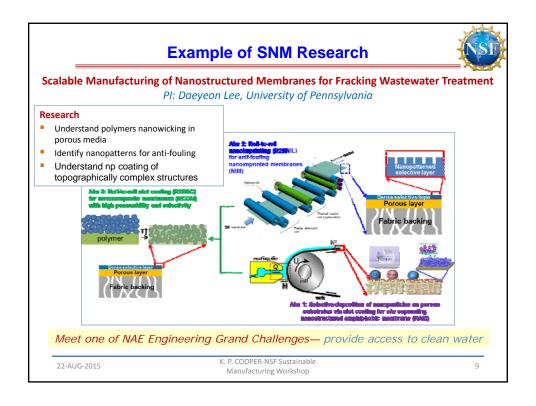
PI: Jacqueline Isaacs, Northeastern University

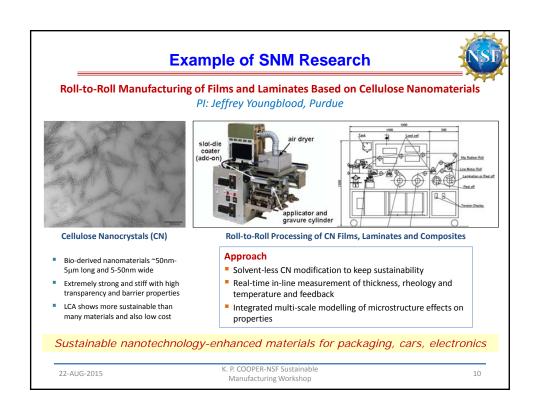
- How can industry develop new nanotechnologies in a responsible and sustainable manner?
- How can we ensure nanomanufacturing processes and products remain safe for workers, consumers and

# Net energy benefits of manufacturing and use of

## Assessing NM and EHS costs and trade-offs for CNT batteries Cost breakdowns for low level of EHS at \$29/battery




- Costs are 15% higher for implementation of highest levels of EHS protection
- Process yield and cycle time have greatest effects on unit cost of laptop batteries
- Annualized cost of a MWCNT-enabled computer battery is \$6.20
- (compared with \$10.86 for conventional batteries) Relative cost of specific energy decreases to \$0.118 /Wh for MWCNT-batteries
- (from \$0.142 /Wh for conventional batteries)
- Development or expansion of battery recycling infrastructures that avoid exposures and releases should be considered at


Hakimian et al. ES Nano. 2015

Zhai, Isaacs, Eckelman, manuscript submitted, 2015

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop





# **NNI Signature Initiative**



## Sustainable Nanomanufacturing: Creating Industries of the Future

**Goal:** Establish manufacturing technologies for economical and sustainable integration of nanoscale building blocks into complex, large-scale systems, e.g., CNTs in nanocomposites

### **Key requirements:**

- Scalable
  - Production must be scalable to the required throughput and yield
  - Accelerate the development of industrial-scale methods for manufacture of functional nanoscale systems

## Controllable and Sustainable

- Generation, manipulation and organization of nanostructures must be accomplished in precise, controlled and sustainable manner as demonstrated by a full life-cycle analysis
- Safe
  - Nanotechnology-enabled products must perform to specification over their expected lifetimes safely

The Signature Initiative targets production-worthy scaling of classes of sustainable materials that have the potential to affect multiple industry sectors with significant economic impact — high-performance structural carbon-based and cellulosic nanomaterials

Federal Agencies: DOD, DOE, EPA, IC/DNI, NASA, NIH, NIOSH, NIST, NSF, OSHA, USDA/FS

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop

11

# **Sustainable Nanomaterials**



## **C-based Nanomaterials**

- Federal Agencies: NRO, DOD, NIST, NASA
- Benefits: Modulus, Strength, Thermal and Electrical Conductivity
- Impact: High-performance, lightweight materials for aerospace, energy and transport
- Manufacturing: Scale-up, quality control, testing, standards for commercial applications
- Measurements/metrology: For development and production
- <u>Lifetime assessment: Degradation and nanomaterial release, accelerated aging tests</u>
- <u>Life-cycle assessment</u>: Gauge commercial readiness

### **Cellulosic Nanomaterials**

- Federal Agencies: USDA/FS, DOE, NIST
- Benefits: Lightweight, abundant, sustainability
- Impact: Structural, packaging, separation and membrane applications
- <u>Research Priorities</u>: Identify new bio-based nanomaterials, preserve biomass nanoscale properties for engineering new products and applications
- <u>Commercialization</u>: Identify pathways, facilitate communication across industry sectors

Strategies and solutions to mitigate process releases and worker exposure

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop

# NM and Environmental, Health and Safety (EHS)



- EHS of large-scale, volume nanomanufacturing potential exposure to workers during production
- Nanomaterials and nanotechnology-enabled products and their exposure to the general public – a high priority
- Assess risks and ensure that nanomanufacturing and nanotechnology-enable products are safe in the workplace and at home
- Current Intelligence Bulletin 65 on Occupational Exposure to Carbon Nanotubes and Nanofibers, 2013 – quantitative risk assessment, recommended exposure limits, risk management recommendations for safe handling and use – CNTs/CNFs
- Focus is development and implementation of engineering control strategies and solutions that mitigate process releases and worker exposures
  - Provide guidance to nanomanufacturing using established materials, such as CNTs and CNCs;
  - Develop prospective guidance for emerging materials, such as graphene, by conducting hazard assessment employing in vitro and in vivo models of exposure and response
- Collaboration with the National Toxicology Program to investigate potential hazards associated with exposure to cellulose nanomaterials

Federal Agencies: CPSC, NIOSH, OSHA, NIST, EPA

22-AUG-2015

K. P. COOPER-NSF Sustainable Manufacturing Workshop